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Abstract

The deformation and drainage of the ®lm between colliding drops is studied numerically at small
capillary numbers, small Reynolds numbers and a range of dispersed to continuous-phase viscosity
ratios, l, covering the transition from partially-mobile to immobile interfaces. Two types of collision are
considered: constant approach velocity and constant interaction force. The problem is solved
numerically by means of a ®nite di�erence method for the equations in the continuous phase and a
boundary integral method or ®nite-element method in the drops. The velocity pro®le in the gap between
the drops is the sum of a uniform and a parabolic contribution, governed respectively by viscous forces
within the dispersed and the continuous phases. Solutions to date concern the limiting cases of partially-
mobile or immobile interfaces, in which either the parabolic or plug contribution is negligible. A
transformation of variables then results in a universal set of governing equations. In the intermediate
regime a transformed viscosity ratio, l�, enters these equations. In the constant-force case, the
transformed drainage rate increases monotonically with l� and the ®nal (rate-determining) stage of
drainage is well described by a power-law dependence of the minimum ®lm thickness on time, enabling
compact analytical approximations to be developed for the drainage time. These expressions reduce to
those in the partially-mobile and immobile limits for l�-values outside the range 10 < l� < 103: In the
constant-velocity case the behavior is more subtle, drainage at the periphery of the ®lm being strongly
a�ected by the plug contribution in the adjoining outer region. This provides an explanation for the
much higher ®nal drainage rates predicted numerically under constant-velocity conditions in the
partially-mobile case. From a practical point of view the most important case to model is that dividing
coalescing from non-coalescing drop collisions. While the constant-force approximation is probably
closest to the ®nal interaction in this case, the sensitivity of the drainage behavior to the outer boundary
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conditions suggests that more realistic simulations are required which take account of the actual, time-
dependent interaction force/velocity. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Drop coalescence is an essential feature of many industrial and natural processes and its
prediction and control is consequently of great practical importance. The coalescence of two
drops can be split conceptually into three elements (see, for example, Chesters, 1991):

1. The external ¯ow ®eld, governing the frequency, strength and duration of collisions.
2. The process of ®lm formation and drainage.
3. The destabilization of the ®lm by van der Waals and other intermolecular forces, leading to

rupture.

Element (1) furnishes the initial and boundary conditions for (2), which in turn provides those
for (3).
While reasonable ®rst approximations for the collision frequency, force and duration and for

the critical ®lm-rupture thickness can be derived in many cases, ®lm drainage is particularly
sensitive to the details of the system concerned. Small tangential stresses exerted on the ®lm by
the dispersed phase or by interfacial-tension gradients translate into large forces per ®lm
volume, which strongly a�ect drainage rates. In pure liquid±liquid systems, exhibiting constant
interfacial tension, the only tangential stresses are those exerted by the dispersed phase, arising
from the internal motion within the drops generated by ®lm drainage. The associated inertial
forces are generally negligible and the retarding e�ect of the tangential stresses on ®lm
drainage depends on the dispersed to continuous-phase viscosity ratio, l:
Numerical solutions of the equations governing ®lm drainage are available in the asymptotic

cases of moderate and very large l-values, corresponding respectively to plug ®lm ¯ow between
partially-mobile interfaces (drainage being controlled by drop viscosity) and plane Poiseuille
®lm ¯ow between immobile interfaces (drainage being controlled by continuous-phase
viscosity). For very small l-values, a third asymptote of fully mobile interfaces is reached,
tangential stresses exerted by the dispersed phase now being negligible and drainage being
controlled by viscous normal stresses in the ®lm (continuous-phase viscosity once more
controlling). The latter regime is typically encountered only for gas bubbles and is not
considered further here, viscous normal stresses in the ®lm being assumed to be negligible.
Numerical solutions for the partially-mobile limit have been obtained for both constant-force

and constant-velocity interactions (Yiantsios and Davis, 1990; Saboni et al., 1995; Abid and
Chesters, 1994). For the immobile limit only constant-force solutions are available (Yiantsios
and Davis, 1990). Recently, Rother et al. (1997) have studied time-dependent force of
interaction, based on a force balance on two spherical drops in apparent contact in buoyancy-
driven ¯ow. While ®rst estimates suggest that the plug-¯ow (partial-mobility) asymptote should
provide a reasonable approximation over a wide range of l-values �10ÿ2 < l < 102: Abid and
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Chesters, 1994), this range by no means covers all systems of practical interest. In addition, the
range becomes narrower if very small drops are involved.
The primary objective of the present paper is to solve the governing equations over a range

of l-values spanning the transition between the two asymptotes, thereby both establishing
more precisely the regime of validity of each and providing quantitative expressions for ®lm
drainage rates in the intermediate region.
In Section 2, the mathematical model is described. The model is based on a number of

simpli®cations, in particular the restriction to gentle collisions, which have also been applied
in the papers of Yiantsios and Davis (1990), Abid and Chesters (1994), Saboni et al. (1995)
and Rother et al. (1997). The present study can be considered as an extension of these to
unrestricted values of the dispersed to continuous phase viscosity ratio. The numerical
method, tests and comparisons are presented in Section 3. In Section 4, results and
discussions are presented for the cases of constant approach velocity (Section 4.1) and
constant interaction force (Section 4.2). Finally, the conclusions of this study are presented
in Section 5.

2. Mathematical formulation

We consider two drops of the same Newtonian ¯uid with viscosity m suspended in another
immiscible Newtonian ¯uid with viscosity m=l, which approach each other along the line of
their centres at some speci®ed velocity V�t� (Fig. 1, t is time). Here, V is either held constant or
adjusted during the drainage process to maintain a constant interaction force. The same

Fig. 1. Schematic sketch of the problem.
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procedure can, however, be used for any function, V�t�, including functions more
representative of actual drop collisions. The interfacial tension, s, is supposed constant.

2.1. Approximations and simpli®cations

The model is based on the following approximations:

1. Small interfacial slope in the severely deformed region of the drops:

@hi
@r
� 1, �1a�

where hi �i � 1,2� and r denote, respectively, interfacial height and radial coordinate (Fig. 1).
Eq. (1a) is satis®ed if

a� Ri, �1b�
where a (de®ned by Eq. (13)) denotes the radius of the ®lm. This enables a major
simpli®cation of the governing equations, which become the same for unequal and equal
drops, the equivalent equal-drop radius being given by (Chesters, 1991; Abid and Chesters,
1994)

Rÿ1eq �
1

2

ÿ
Rÿ11 � Rÿ12

� �2�

In addition, the interface may be approximated as plane as far as ¯ow in the drop is
concerned. As noted by Chesters (1991), Eq. (1b) is not as restrictive as it appears since only
for gentle collisions drainage is typically rapid enough for coalescence to occur.

2. The considerations are limited to the viscous regime, in which the inertial forces in the ®lm
and the adjacent dispersed-phase ¯ow are negligible.

3. The in¯uence of viscous normal stresses in the ®lm is neglected, allowing the quasi-parallel
¯ow in the ®lm to be approximated as the sum of a plug (uniform) and parabolic pro®le.

4. The in¯uence on ®lm drainage of viscous normal stresses and pressure variation in the drop
is neglected.

5. The e�ects of body forces or acceleration of the reference frame are neglected.

The regime of validity of these approximations has been discussed by Abid and Chesters
(1994).

2.2. Governing equations

Taking Eq. (1) into account, the continuity and Navier±Stokes equations in the ®lm can be
expressed in integral form:

@h

@t
� ÿ1

r

@�rhu�
@r

, �3�
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t � ÿh
2

@p

@r
, �4�

where h � h1 ÿ h2 is the gap thickness, t the tangential stress exerted on the interface by the
®lm, p the pressure in the ®lm and u the mean velocity in the ®lm, consisting of the sum of
uniform and parabolic parts, uu and up, respectively:

u � uu � up � uu ÿ l
12m

h2
@p

@r
, �5�

Note that uu is also the interface velocity. In general both parts, being of order O�h2� and
O�h3� respectively �@p=@r0O�h�), could be important for the ¯ow in the gap:

. the parabolic part outside the ®lm region r� a (relatively large h ) even at small values of l;

. the uniform part in the ®lm region r < a at the last stage of drainage �h� a� even for large
l:

Within the drops, the continuity and Navier±Stokes equations are:

r � v � 0 �6�

ÿrpd � mr2v � 0, �7�
where pd is the pressure and v the velocity in the drop.
The boundary conditions at the interfaces consist of continuity of tangential velocity and

stress, together with a jump in normal stress (i.e. pressure) associated with the interfacial
tension:

uu � vr �8�

t � td �9�

p � 2s
Req

ÿ s
2

�
@2h

@r2
� 1

r

@h

@r

�
�10�

where use has be made of Eqs. (1) and (2). The outer boundary conditions at su�ciently large
r, rlarge, are:

p�rlarge� � 0 �11�

and either�
@h

@t

�
rlarge

� ÿV�t� �12�

or
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2p
�rlarge

0

pr dr � F�t� � 2p�a�t��2s
Req

�13�

In the constant-velocity and constant-force cases investigated in the present paper, V and F
are, respectively, the drop approach velocity and interaction force and they are considered to
be constant with respect to the time; a is a measure of the ®lm radius (a = constant, in the
constant-force case).
The initial condition is

h � h0 � r2

Req

, t � 0 �14�

which corresponds to undeformed drops �p � 0 in Eq. (10)).

2.3. Transformed dimensionless equations

A transformation of the variables in Eqs. (3)±(14) is possible, which renders them
dimensionless and reduces the number of parameters to one: a dimensionless group containing
the viscosity ratio l: The required transformation is di�erent in the constant-velocity and
constant-force cases, for details see Chesters (1991), Abid and Chesters (1994) and Saboni et al.
(1995).
Constant approach velocity:

r� � r

Ca1=3Req

; h� � h

Ca2=3Req

; t� � tV

Ca2=3Req

; t� � t�d �
tCa2=3Req

mV
; z� � z

Ca1=3Req

;

p� � pReqCa

mV
; p�d �

pdReqCa
2=3

mV
; u� � uCa1=3

V
; v� � vCa1=3

V
; l� � lCa1=3

where Ca is the capillary number, Ca � mV=s:
Constant interaction-force:

r� � r

Reqa 0
; h� � h

Reqa
02 ; t� � tsa 0

Reqm
; t� � t�d �

t Req

sa 0
; z� � z

Reqa 0
;

p� � pReq

s
; p�d � pd

Req

sa 0
; u� � mm

sa 02
; v� � vm

sa 02
; l� � la 0

where a 0 is the dimensionless radius of the ®lm: a 0 � a=Req:

Remark. The dispersed-phase variables z and pd are seen to transform di�erently from their
continuous-phase counterparts h and p. This in fact justi®es the approximations (1) and (4). For
example, since zinterface � h=2,
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@zinterface

@r
� 1

2

@h

@r
yielding

@z�interface

@r�
4

a
2

@h�

@r�
,

where a stands for Ca1=3 or a 0: In the small-a limit, therefore, a signi®cant value of @h�=@r�

translates into a negligible value of @z�interface=@r
�, justifying treatment of the interface as plane in

transformed coordinates as far as the drop ¯ow is concerned.

Applying the above transformations to Eqs. (3)±(14) a set of dimensionless governing
equations is obtained, containing only one parameter, l�: Two additional parameters, h�0 and
r�large enter the problem via the initial and boundary conditions, but these prove of no in¯uence
provided chosen su�ciently large.
The governing Eqs. (3)±(14) in transformed variables take the form:

. Equations in the ®lm, see Eqs. (3)±(5):

@h�

@t�
� ÿ 1

r�
@
ÿ
r�h�u�u

�
@r�

� 1

r�
l�

12

@

@r�

�
h�3r�

@p�

@r�

�
�15�

t� � ÿh
�

2

@p�

@r�
, �16�

. equations in the drops, see Eqs. (6) and (7):

r� � v� � 0 �17�

ÿr�p�d �r�2v� � 0 �18�
. boundary conditions at the interfaces, see Eqs. (8)±(10):

u�u � v�r �19�

t� � t�d �20�

p� � 2ÿ 1

2

�
@2h�

@r�2
� 1

r�
@h�

@r�

�
�21�

. initial condition, see Eq. (14):

h��r�,t� � 0� � h�0 � r�2 �22�
. outer boundary conditions, see Eqs. (11)±(13):

p�
ÿ
r�large

� � 0 �23�

ÿ
�
@h�

@t�

�
r�

large

� V � � 1 �24�
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in the constant-velocity case or�r�
large

0

p�r� dr� � 1 �25�

in the constant-force case.

3. Numerical method

3.1. Numerical scheme

The solution scheme for the constant-velocity case (Eqs. (15)±(24)) is as follows. Starting
from a given h��r��, given by Eq. (22), p� is calculated from Eq. (21) and t� from Eq. (16),
providing (via Eq. (20)) the boundary condition for Eqs. (17) and (18). The solution of these
equations in the drops then furnishes u�u via Eq. (19). Now having u�u and p� the ®lm thickness
at the next time instant can be obtained from Eq. (15) and the whole process is repeated.
Eqs. (17) and (18), governing the ¯ow in the drop, are solved using one of the following

methods, approximating the interface as ¯at:
The boundary integral method (BIM), providing a direct relation between u�u and t� (Davis

et al., 1989):

u�u�r�� �
�r�

large

0

f
ÿ
r�,r 0

�
t��r 0 � dr 0, �26�

where the elliptic Green's function kernel f�r�,r 0 � is

f
ÿ
r�,r 0

� � r 0

4p

�2p
0

cos y dy

�r�2 � r 0 2 ÿ 2r�r 0 cos y�1=2
�27�

Special attention is paid to the singularity of Eq. (27), which appears at r� � r 0:
A ®nite element method (FEM), which has the advantage of providing information on the

¯ow in the drops and can be extended to a more general constitutive equation (e.g. general
viscous or viscoelastic dispersed phase), but the disadvantage that it may consume more CPU
time. As the results obtained by both methods are the same, in most of the cases BIM is used
here. The FEM is used only when we need information about the ¯ow in the drops.
Eq. (15) is a nonlinear, fourth-order, hyperbolic-type partial di�erential equation with

respect to h�: An Euler explicit scheme of ®rst order with respect to t� is used for the time
derivative and a ®nite di�erence scheme of second order on non-uniform mesh for the spatial
derivatives. Because this equation is very sti� as has been mentioned by Rother et al.,
especially for high l�, special attention must be paid to it. It can be shown that the
requirements for numerical stability of Eq. (15) arising from the plug and parabolic parts of
the ¯ow (the ®rst and second terms on the rhs of Eq. (15)) are respectively:
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�Dt��IRconst � min
j�0,n

 
Dr�3j
h�2j

!
, �28a�

and

�Dt��IIR24

l�
min
j�0,n

 
Dr�4j
h�3j

!
, �28b�

where j are the numbers of the nodes r�j in the mesh, Dt� is the time step, Dr�j � r�j ÿ r�jÿ1 are
the space steps, and h�j are the values of h� in the nodes r�j : Eq. (28b) is much more restrictive
than Eq. (28a), especially for large l�: However, the computation of the second term on the
rhs of Eq. (15) consumes much less CPU time than the ®rst, plug term, which depends via u�u
on the solution of Eqs. (17) and (18). Based on these features a multiple time step approach
has been developed (see Bazhlekov and van de Vosse, 1998) with automatic choice of the time
steps, �Dt��I and �Dt��II, according to Eq. (28).
To avoid very small time steps (time steps used in the present calculations are in the interval

10ÿ4±10ÿ9) non-uniform meshes are generated accordingly to the values of h�j , very small
constant step, Dr�f , in the ®lm region, 0 < r� < 1:3, where the most severe deformation appears;
increasing by a geometrical-progression law at large r�, becoming of order 0.5 at the end of the
computational domain �r� � r�large). Choosing the parameter of the geometrical progression
(ratio between two following steps) very close to 1 the generated meshes locally are almost
uniform. The coarse part of the mesh Dr�0O�1� far from the ®lm region does not introduce
additional errors, because the interfaces di�er only slightly from a parabola and the second-
order accuracy scheme, which is used, is exact for parabolas. In most of the constant-force
calculations three di�erent meshes are used:

. Dr�f 00:05 at the beginning, prior to signi®cant deformation �h�min > 1);

. Dr�f 00:02 during the ®lm formation �0:1 < h�min < 1);

. Dr�f 00:01 after the dimple is formed.

In the case of constant approach velocity the same approach is used, however the ®nest part of
the mesh is progressively extended following the expansion of the dimple. Thus, the number of
the nodes in the last stage of drainage is of order 150±300 of which more than 2/3 are located
in the dimple region.
To avoid any perturbations arising from remeshing, a spline interpolation is used to

calculate h�j in the nodes of the new mesh.
The value of r�large is chosen such that t��r�large� � 1, so that the error introduced in the

integration of Eq. (26) by truncating the interface is small enough. Thus, in the constant-
velocity case rlarge � 30 and in constant-force one r�large � 10 (at l� � 0; r�large � 20). The value of
h�0 is chosen to be 2 in the constant-velocity case, which is the value used in the previous paper
by Abid and Chesters (1994) and 8 in constant-force one.
In the constant-force case, because of the initial condition (22) for which p� � 0 and the

explicit numerical scheme used, Eq. (25) is not satis®ed initially. Thus, the imposed approach
velocity (given by the rhs of Eq. (24)) is held constant at some initial value, V �appr, until Eq.
(25) is satis®ed. This velocity is then decreased, ®nally becoming almost zero, in such a way as
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to continually satisfy Eq. (25). For the results presented in the next section, Eq. (25) is satis®ed
within an error of less than 0.1%.
The implicit numerical scheme used by Yiantsios and Davis and improved recently by

Rother et al. is more e�cient with respect to the CPU time than that used here. However, in
the present approach the ®lm equation (15) and drop Eqs. (17) and (18) are solved
independently and the method can therefore be extended to simulations involving nonlinear
dispersed-phase equations, arising from heat-mass transfer or non-Newtonian viscous or
viscoelastic constitutive equations. In contrast, the approach used by Rother et al. (1997) is
restricted to drop ¯ow governed by linear equations only (their linear matrix relation (4.8)
between the tangential stress and velocity).

3.2. Numerical tests

In order to check the sensitivity of the solution to the values of the extra parameters of the
mathematical model �r�large, h

�
0, the spatial resolution and V �appr in the constant force case) and

to optimize these values, a number of tests have been performed. In Fig. 2 results for h�min�t��
in the case of constant interaction force at l� � 100 are shown for di�erent values of the extra
parameters. The solid line corresponds to the reference values, r�large � 10; h�0 � 8;
V �appr � 20l� � 2000, and is obtained using 190 mesh nodes with resolution Dr�f � 0:01: These
reference values have been used in most of the constant-force calculations (with the exception
of l� � 0, for which r�large � 20). Fig. 2 indicates that further increase in the values of the
parameters or spatial resolution has a negligible in¯uence on the ®lm drainage (for

Fig. 2. The in¯uence of the extra parameters, V �appr, h
�
0, r
�
large and the number of the nodes in the mesh on the results

at l� � 102 (constant interaction force, l� � la 0). Thick line corresponds to the reference values of these parameters,
V �appr � 20l� � 2000, h�0 � 8, r�large � 10 and number of the nodes, 190 �Dr� � 0:01 for r� < 1:3).
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h�min�t�� < 0:3). The time steps restricted by the numerical stability conditions (28) are already
small enough and their further decrease does not change the results at all.

3.3. Comparisons with previous numerical results

In order to check the ability of the presented numerical approach to solve the mathematical
model Eqs. (3)±(14) a number of comparisons with the available numerical and analytical
results in the partially-mobile and immobile limits have been performed �l� � 0 and 1,
respectively). Comparisons with the numerical results of Abid and Chesters (1994) and
asymptotic results of Yiantsios and Davis (1990) are presented in Sections 4.1 and 4.2,
respectively.
In the present section comparisons with Saboni et al. and Rother et al. in the partially-

mobile limit for constant interaction force are discussed. Saboni et al. have presented numerical
results of the evolution of the ®lm thickness pro®les (their ®gure 2). However, they have
predicted a value of the dimple radius about r�D � 1:2 in contrast with previous as well as
present study (see Fig. 9a) which indicates that r�D is very close to unity. Rother at al. have
discussed this discrepancy and concluded that the main reason is the inability of the explicit
method used by Saboni et al. or its modi®cation to yield accurate results for ®lm-drainage
model concerned. We think, however, that the main reason for the mentioned discrepancy is
that Saboni et al. did not satisfy the constant-force boundary condition (their equation 15)
early enough in the drainage process: their ®gure 3 suggests that this condition is only satis®ed
at the largest t�-value �t� � 50).
In order to check the validity of the explicit numerical scheme described in the present

Fig. 3. Comparison between the present numerical results (dashed lines) and these of Rother et al. (thick lines) with
respect to the ®lm thickness pro®le at l� � 0 and A� � 10ÿ4 (constant interaction force).
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section, comparisons with the results of Rother et al., who used a fully implicit numerical
technique, have been performed. For this purpose the intermolecular van der Waals attraction
forces have been included in the model. (An extensive investigation of the overall in¯uence of
the viscosity ratio and intermolecular forces will appear in a separate paper). In the partially-
mobile case �l� � 0� this a�ects only Eq. (16) which becomes (see Saboni et al. (1995) and
Rother et al. (1997)):

t� � ÿh
�

2

@p�

@r�
� A�

h�3
@h�

@r�
�29�

where A� �A=�4psR2
eqa
0 6� and A is the Hamaker constant. This change of the mathematical

model does not necessitate any changes in the numerical algorithm. Only the mesh is re®ned at
the periphery of the dimple, where the spatial steps are of order of magnitude smaller �Dr� �
0:001� in order to approximate the extremely high gradients of t�, p� and u� accurately.

Fig. 4. Time evolution of the ®lm thickness for di�erent l� values (constant approach velocity, l� � lCa1=3).

I.B. Bazhlekov et al. / International Journal of Multiphase Flow 26 (2000) 445±466456



In Fig. 3 a comparison between the present results (dashed lines) and Rother et al.'s (thick
lines) for l� � 0 and A� � 10ÿ4 are shown. The only di�erences between the two simulations
are:

. the numerical approach (purely explicit in the present case and fully implicit in the approach
used by Rother et al.);

. a di�erent initial separation, h�0 � 8 (dashed lines) and h�0 � 4 (thick lines), which results in a
di�erence with respect to t� of about 1.8 (the time, t�, of the present results is translated
with ÿ1.8).
The comparisons with respect to the rupture time at di�erent A�-values are also in good

agreement with Rother et al.'s (their ®gure 5).
Based on the above comparisons it can be concluded that the present explicit numerical

scheme can be a successful alternative to the available implicit ones, especially for simulation
of ®lm drainage in coalescing non-Newtonian dispersions.

4. Results and discussion

4.1. Constant approach velocity

For all results presented in this case h�0 � 2 and r�large � 30: Fig. 4 displays the variation of
the transformed ®lm thickness h��r�� with time for four values of l�: The results for l� � 0
(Fig. 4a) agree well with those obtained by Abid and Chesters (1994) except at very large times
�t� > 50), for which the present computations predict higher drainage rates (Fig. 5). The
present results are seemed to be more reliable in view of the procedure of grid re®nement
adopted. Abid and Chesters already found ®nal values of ÿdhmin=dt to be higher than those in

Fig. 5. Variation of the minimal ®lm thickness as a function of the time for di�erent l� (constant approach
velocity). Present results (thick lines); Abid and Chesters' results for l� � 0 (dashed line).
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the constant-force case (for given values of a and hmin) and this result is thus strengthened
further. This di�erence between the constant-velocity and constant-force cases must arise from
the di�erence in outer boundary conditions, the imposed approach velocity, V, being constant
in one case and falling towards zero in the other. The mechanism by which V�t� a�ects the
®nal stages of drainage emerges from the results obtained for non-zero l�-values, as discussed
below. The ¯ow pattern within the drop, obtained by FEM simulation, is shown in Fig. 6.
The in¯uence of l� on the development of the ®lm and on the transformed drainage rate,
ÿdh�min=dt

�, is seen from Fig. 4 and Fig. 5, respectively. Keeping in mind that the
transformations for h�, r� and t� involve only the dispersed-phase viscosity, the progression
from Fig. 4a to Fig. 4d may be viewed as the e�ect of reducing the continuous-phase viscosity,
starting from a value for which the parabolic contribution to ®lm ¯ow is negligible. Intuitively,
this would be expected to provoke a monotonic increase in the drainage rate. Fig. 5 indicates,
however, that while this increase is observable initially, at large t�-values drainage is fastest for
l� � 0: Additionally, for l� � 0 the dimple becomes much more pronounced.
To understand this result the ratio between the parabolic and plug contributions was

examined. Fig. 7 shows the result for l� � 10: Except in the early stages of drainage, the
parabolic contribution is negligible within the ®lm, though dominant just outside it. If the

Fig. 6. Flow pattern within the drop for l� � 10 and t� � 20 (constant approach velocity).
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in¯uence of this outer region is small the later stages of drainage should therefore closely
resemble those for l� � 0, aside from any history e�ects arising from the greater role of the
parabolic contribution in the early stages of drainage. An alternative possibility is that the ¯ow
in the outer region drives the drop circulation, thereby strongly a�ecting the thinning rate at
the edge of the ®lm.
To choose between these possibilities the following numerical experiment was performed: the

®lm shape for l� � 10, t� � 120 was taken as initial condition for a computation using l� � 0:

Fig. 7. Variation of the ratio between the parabolic and uniform contributions to the mean velocity in the ®lm for

l� � 10 (constant approach velocity).

Fig. 8. Evolution of the ®lm thickness with time for l� � 10 (dashed lines) and l� � 0 (thick lines), taking the
results for l� � 10 and t� � 120 as initial condition (constant approach velocity).
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Fig. 9. Time evolution of the ®lm thickness for di�erent values of l� (constant interaction force, l� � la 0).
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If history e�ects are primarily responsible for the observed in¯uence of l�, the ensuing
drainage should now closely resemble that for l� � 10: The results of this experiment are
shown in Fig. 8. It is seen that the elimination of the parabolic contribution for t� > 120
dramatically accelerates drainage at the periphery of the ®lm, which becomes more like that in
Fig. 4a. This shows that the parabolic contribution to the ¯ow, though negligible in the
thinnest region of the ®lm, nevertheless strongly in¯uences drainage there. The e�ect
presumably results from the strong in¯uence of the parabolic contribution on interfacial
velocities in the outer region. In this region the interfaces are only slightly deformed and the
mean velocity, u�, is virtually independent of l�, being determined by continuity. For l� � 10,
much the greater contribution to u� arises from the parabolic contribution, u�p, and the
interfacial velocity, u�u, is consequently small �u�u � u�), whereas for l� � 0, u�u � u� . The more
higher interfacial velocity in the outer region when l� � 0 is communicated via viscous action
within the drop to the inner region, leading to more pronounced dimple development and
greatly accelerated drainage at the periphery of the ®lm.
A further check on the preceding explanation is provided by the in¯uence of l� in the

constant-force case. In this case, the approach rate of the interfaces in the region outside the
®lm is extremely small in the ®nal stages of drainage. Even for l� � 0 therefore, interfacial
velocities in the outer region are small and the presence of a parabolic component should have
little e�ect. This indeed proves to be the case (Section 4.2).

4.2. Constant interaction force

In the constant-force case a number of numerical tests indicate (see Section 3.2) that the
initial, constant-velocity phase of drainage is without in¯uence on the ®nal behavior provided
Eq. (25) is satis®ed well before the formation of the dimple. For the results presented in the
present section Eq. (25) is satis®ed at h�min > 7:5, while the ®lm is formed at h�min < 1: The

Fig. 10. Variation of the minimal ®lm thickness as a function of the time for di�erent l� (constant interaction
force), numerical results (thick lines) and asymptotic formulae (30),(33), for l�r10 (dashed lines).
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required initial approach velocity, V �appr, increases with l� and at h�0 � 8 it is V �appr � 5 for l� �
0 and V �appr � 20l� for l�r1:
In Figs. 9 and 10 the time evolution of h� and h�min is shown for di�erent values of l�: It is

seen from Fig. 9a±e that with increasing l� the dimple, is formed at larger h�min and the depth
of the dimple �h��0� ÿ h�min� in the later stages of drainage also increases. The only exception is
the approach to partial mobility, l�R10, for which the dimple depth decreases with increasing
l�: As discussed in Section 4.1, this behavior at small l�-values results from the in¯uence of
the outer region ¯ow via the ¯ow in the drop. An accompanying e�ect is a small change in the
value of the ®nal dimple radius, r�D, from 0.99 for l� � 0 to 0.97 for l�r10: More detailed
investigation shows that the ®nal dimple radius is 0.97 even for very small l� � 0:01 . This
deviation from the value for l� � 0 again results from the in¯uence of the parabolic part of the
®lm ¯ow in the outer region
The case l� � 0 has been examined by Yiantsios and Davis (1990). The results of Yiantsios

and Davis are seen to agree well with the present ones when expressed in terms of the
transformed variables (Fig. 11).
Fig. 10 indicates that the drainage rate increases monotonically with l�, in contrast with the

constant-velocity case. Once the dimple becomes pronounced1 the drainage rate is well
approximated for all l�-values by a simple power law:

h�min �
K�l��
�t��m�l� �

�30�

Eq. (30) is consistent with Yiantsios and Davis' results in the small and large-l� limits (their

Fig. 11. Comparison between the present numerical results for l� � 0 (thick line) and Eq. (31) (dashed line).

1 Typically when h�min < 0:1: However, for l� � 0, Eq. (30) becomes a good approximation somewhat later:
h�min < 0:03 (see also Fig. 11).
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equations (70) and (37) respectively) which, when expressed in the present transformed
variables, become (see Appendix A)

h�min �
0:18

�t��2=3 , l�40 �31�

h�min �
0:6

�l�t��1=2
, l�41 �32�

As noted earlier, the small-l� limit Eq. (31) agrees well with the present results (see Fig. 11).
Fig. 10 indicates that it also provides a good approximation for l�-values up to 10 provided
h�min is small enough �h�minR0:03). For larger h�min-values, however, the range of l� -values for
which the approximation of partial mobility applies is narrower.
The large-l� limit Eq. (32) becomes a reasonable approximation if l�r103 (Fig. 12). Since

the present considerations are based on the restriction a 0 � 1 (Eq. (1b)), the approximation of
partial interfacial mobility will typically be a good one up to l-values of at least 102 while the
approximation of interfacial immobility will be a good one only if l is at least 104. This
statement pre-supposes that dimpling precedes rupture. For very small drops this may not be
the case and the upper l-limit at which the approximation of partial mobility fails will then be
smaller.
From a practical point of view it is useful to derive analytical, albeit approximate,

expressions for m�l�� and K�l�� in the range of l�-values for which neither Eqs. (31) nor (32)
are satisfactory �10 < l� < 103). Fig. 10 shows that a reasonably good ®t of the numerical
results over all l�-values is provided by the empirical expressions

Fig. 12. Comparison between the numerical results for l� � 103 and 104 (thick lines) and Eq. (32) (dashed lines).
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m�l�� � 1

2
� �1=6�

1:0045l
� , K�l�� � 0:18

�0:09l��0:5�1ÿ1:025ÿl
� � �33�

Eq. (33) reduces to the values of m and K given by Eqs. (31) and (32) in the small and large-l�

limits.
Yiantsios and Davis also proposed a power-law relation like Eq. (30) for the thickness at the

®lm centre in the small and large-l� limits. Such a relation does not, however, adequately
describe the results obtained in the intermediate range of l�-values, except perhaps at such
large values of t� that h�min would in reality have long since attained the critical rupture
thickness.

5. Conclusions

The present results bridge the gap between existing ®lm-drainage models for partially-mobile
and immobile interfaces under constant-force or constant-velocity conditions. In the constant-
force case, the ®nal (rate-determining) phase of drainage proves to be well described by a
power-law dependence of the minimum ®lm thickness on time, enabling compact analytical
approximations to be developed for the drainage time (Eqs. (30) and (33)). These expressions
reduce to those in the partially-mobile and immobile limits for l�-values outside the range 10 <
l� < 103:
The results also shed light on the in¯uence of the collision boundary conditions (constant-

force versus constant-velocity) on the ®nal phase of drainage. Any outward interfacial motion
in the region just beyond the ®lm communicating via viscous action to the ®lm itself, thereby
strongly increasing the thinning rate at the edge of the ®lm.
With the exception of gravity-driven drainage between a drop and a free interface, real

collisions are characterized neither by a constant interaction force nor by a constant approach
velocity. Typically the interaction force rises to a maximum as the approach velocity falls to
zero, after which the drops begin to separate again if coalescence has not occurred. From a
modelling point of view, the situation of greatest importance is that dividing coalescing from
non-coalescing collisions, in which the required drainage time is just equal to that available.
The ®nal stages of drainage then take place around the point at which the interaction force is
maximal and the constant-force results would be expected to provide a better description than
the constant-velocity ones. Both for this reason and because of the simpli®cation of a power-
law description of the ®nal phase of drainage, more attention has been paid here to the
constant-force case. The extreme sensitivity of the drainage behavior to any motion in the
outer region suggests, however, that more realistic simulations of the actual boundary
conditions are desirable. A ®rst attempt to incorporate such conditions in the partially-mobile
limit has been made by Abid (1993), using a time-dependent approach velocity derived from
equations of motion of the drops during an inertial collision.
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Appendix A. Drainage relations of Yiantsios and Davis, expressed in transformed variables

The ®rst case considered by Yiantsios and Davis concerns the draining ®lm between an
immobile deformable drop (radius R ) and a plane rigid surface under action of a constant
gravitational force,

F � 4p
3
DrgR3 �A1�

where Dr is density di�erence, g acceleration due to gravity, for which they obtain a ®nal
drainage rate given by (their equation (37)

hmin

h0
� 0:4897d

�
lDrgRt

m

�ÿ1=2
, �A2a�

d � DrgR3

sh0
: �A2b�

As observed by Yiantsios and Davis (p. 561, 562), the governing equations in this case are the
same as those for drainage between an immobile drop and a plane, immobile deformable
interface if d in Eq. (A2a) is replaced by 2d:

hmin

h0
� 2� 0:4897d

�
lDrgRt

m

�ÿ1=2
: �A3�

From Eq. (2), the equivalent radius for this system is 2R�R1 � R,R2 � 1�: Eqs. (13) and (A1)
now yield a 0 � a=2R � �DrgR2=3s�1=2 and Eq. (A3) may be re-written as

h�min �
3� 0:4897���

6
p �l�t��ÿ1=2� 0:5998�l�t��ÿ1=2 �A4�

which rounds o� to give Eq. (32).
When both drop and deformable plane interface are partially mobile, Yiantsios and Davis

obtained (their equation (70))

hmin

h0
� 0:08d

 
lDrgR3=2t

mh1=20

!ÿ2=3
�A5�

for a value of d of 0.025. Making use of the de®nitions of h� and t�, together with Eq. (A2b),
Eq. (A5) yields
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h�min �
3� 0:08

2�12d�1=3
�t��ÿ2=3� 0:1793�t��ÿ2=3 �A6�

which rounds o� to give Eq. (31).
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